Đề ôn thi học kì 2 môn Toán Lớp 12 - Đề 4 - Năm học 2021-2022 (Có lời giải)
Bạn đang xem tài liệu "Đề ôn thi học kì 2 môn Toán Lớp 12 - Đề 4 - Năm học 2021-2022 (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_on_thi_hoc_ki_2_mon_toan_lop_12_de_4_nam_hoc_2021_2022_co.docx
Nội dung text: Đề ôn thi học kì 2 môn Toán Lớp 12 - Đề 4 - Năm học 2021-2022 (Có lời giải)
- ĐỀ ÔN THI HỌC KỲ II – NĂM HỌC 2021-2022 ĐỀ 4 Môn: Toán lớp 12 Câu 1: Trong không gian Oxyz cho mặt cầu có phương trình: x2 y2 z2 2x 6y 1 0 . Xác định tâm I và tính bán kính R của mặt cầu đã cho. A. I 1; 3;0 , R 3 . B. I 2; 6;0 , R 40 .C. I 1;3;0 , R 3. D. I 1; 3;0 , R 11 Câu 2: Viết phương trình tham số của đường thẳng d đi qua điểm M 1;2;3 và có vectơ chỉ phương a 1; 4;5 . x 1 t x 1 t x 1 t x 1 t A. y 4 2t . B. y 2 4t . C. y 2 4t . D. y 4 2t . z 5 3t z 3 5t z 3 5t z 5 3t Câu 3: Tìm một vectơ pháp tuyến của mặt phẳng P : 2x y 3z 2 0 . A. n 2;1;3 . B. n 2; 1;3 . C. n 2; 1;3 . D. n 2; 1; 3 . 1 Câu 4: Tính I 1 x .exdx . 0 A. e . B. e 2. C. 2 e. D. e 2 . Câu 5: Xác định tọa độ điểm biểu diễn cho số phức z 2 3i . A. 2;3 . B. 2;3 . C. 2; 3 . D. 2; 3 . Câu 6: Trong không gian với hệ trục Oxyz , cho a 3;2;1 , b 3;2;5 . Xác định tọa độ vecto tích có hướng a,b của hai vecto đã cho? A. 0;8; 12 . B. 8; 12;5 . C. 0;8;12 . D. 8; 12;0 . Câu 7: Cho hình phẳng giới hạn bởi các đường y x3 1, y 0, x 0 , x 1 quay xung quanh trục Ox . Tính thể tích của khối tròn xoay tạo thành? 79 5 23 A. . B. . C. . D. 9 . 63 4 14 x 1 y 2 z 3 Câu 8: Với giá trị nào của tham số m thì đường thẳng d : song song với đường thẳng 2 2 m x 1 t : y 2 t t ¡ ? z 2 2t A. 4 . B. 2 . C. 3 . D. 1. 2 2 2 Câu 9: Gọi z1 ; z2 là nghiệm của phương trình z 2z 3 0 . Tính giá trị của biểu thức z1 z2 ? A. 2 3 . B. 3 . C. 2 . D. 6 . Câu 10: Xác định mặt phẳng song song với trục Oz trong các mặt phẳng sau? A. x 1. B. x y z 0 . C. z 1. D. x z 1. 3 3 1 Câu 11: Cho hàm số f x thỏa mãn f x dx 5 và f x dx 1. Tính tích phân I f x dx ? 1 1 1 A. I 4 . B. I 6 . C. I 6 . D. I 4 . Câu 12: Tính khoảng cách từ điểm M 3;0;0 đến mặt phẳng Oxy ? A. 0 . B. 2 . C. 1. D. 2 .
- b a Câu 21: Cho hàm số y f x liên tục trên đoạn a;c và a b c . Biết f x dx 10, f x dx 5. a c b Tính f x dx? c A. 15. B. 15 . C. 5 . D. 5 . ex 3 e3x Câu 22: Giả sử F x là một nguyên hàm của f x trên 0; và I dx . Khẳng định nào sau x 1 x đây đúng? A. I F 4 F 2 . B. I F 6 F 3 . C. I F 9 F 3 . D. I F 3 F 1 . Câu 23: Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng P song song với hai đường thẳng giả x 2 t x 2 y 1 z sử 1 : , 2 : y 3 2t . Tìm một vectơ pháp tuyến của mặt phẳng P ? 2 3 4 x 1 t A. nP 5; 6;7 . B. nP 5;6; 7 . C. nP 5; 6;7 . D. nP 5;6;7 . Câu 24: Trong mặt phẳng phức (hình dưới), số phức z 3 4i được biểu diễn bởi điểm nào trong các điểm trên hình vẽ? A. Điểm A . B. Điểm D . C. Điểm C . D. Điểm B . Câu 25: Cho hình phẳng H giới hạn bởi các đường y x2 2x , trục hoành, trục tung, đường thẳng x 1. Tính thể tích V hình tròn xoay sinh bởi H khi H quay quanh trục Ox ? 7 8 15 4 A. V . B. V . C. V . D. V . 8 15 8 3 Câu 26: Tìm một họ nguyên hàm của hàm số f x e4x 2 ? 1 1 A. f x dx .e2x 1 C . B. f x dx . e2x 1 C . 2 2 1 C. f x dx e2x 1 C . D. f x dx .e4x 2 C . 2 Câu 27: Cho số phức z a bi a,b ¡ ;a 0 . Xác định kết quả của phép toán z z ? A. 0. B. Số thuần ảo. C. Số thực. D. 2. Câu 28: Trong không gian Oxyz , viết phương trình mặt phẳng P đi qua điểm A 3;2; 5 và vuông góc x 3 2t với đường thẳng d : y 1 t t ¡ ? z 6 A. 2x y z 3 0 . B. 2x y 8 0 . C. 2x y 5 0. D. 2x y 8 0 .
- 2 A. z2 z . B. z.z a2 b2 . C. z z 2a . D. z z 2bi . 3 x 3 Câu 39: Biết tích phân dx bln 2; a,b ¡ . Tính giá trị của biểu thức a b ? 2 0 cos x a A. 1 B. 0 . C. 2 . D. 1. 5 2 x 2 1 Câu 40: Biết I dx 4 a ln 2 bln 5; a;b ¢ . Tính S a b ? 1 x A. S 11. B. S 5. C. S 9 . D. S 3. a Câu 41: Biết F(x) 6 1 x là một nguyên hàm của f (x) . Tính giá trị của a ? 1 x 1 A. 3 . B. . C. 3 . D. 6 . 6 Câu 42: Cho hình phẳng giới hạn bởi các đường y x ln x, y 0, x e quay quanh trục Ox . Tính thể tích khối tròn xoay tạo thành? 4e3 1 4e3 1 2e3 1 2e3 1 A. . B. . C. . D. . 9 9 9 9 1 1 1 Câu 43: Tìm số phức z biết rằng ? z 1 2i (1 2i)2 10 35 10 14 8 14 8 14 A. z i . B. z i . C. z i . D. z i . 13 26 13 25 25 25 25 25 2 8 f ( 3 x) Câu 44: Cho hàm số f (x) liên tục trên ¡ và thỏa mãn tan xf (cos2 x)dx dx 6. Tính tích phân 0 1 x 2 f (x2 ) dx ? 0 x A. 10. B. 6 . C. 7 . D. 4 . e ln x Câu 45: Cho I dx có kết quả dạng I ln a b với a , b . Tìm khẳng định đúng? 2 ¤ 1 x ln x 2 1 A. b 1. B. 4a2 9b2 11. C. 2a 3b 3. D. 2ab 1. a Câu 46: Trong mặt phẳng Oxy cho điểm A biểu diễn số phức z1 1 2i . B là điểm thuộc đường thẳng y 2 sao cho tam giác OAB cân tại O . Điểm B biểu diễn số phức nào sau đây? z 1 2i A. z 1 2i . B. z 2 2i . C. . D. z 1 2i . z 1 2i Câu 47: Trong không gian với hệ tọa độ Oxyz cho mặt cầu S có phương trình x2 y2 z2 2 a 4b x 2 a b c y 2 b c z d 0 , tâm I nằm trên mặt phẳng cố định. Biết rằng 4a b 2c 4 , tìm khoảng cách từ điểm D 1;2; 2 đến mặt phẳng ? 9 1 1 15 A. . B. . C. . D. . 15 314 915 23 Câu 48: Trong không gian với hệ trục tọa độ Oxyz , cho OA 2i 3 j 5k . Điểm M thuộc mặt phẳng Oxy thỏa mãn độ dài AM nhỏ nhất. Xác định tọa độ của điểm M A. 0;3;0 . B. 2;3;5 . C. 3;5;0 . D. 2;3;0 .
- Lời giải Chọn B Mặt phẳng P có phương trình: 2x y 3z 2 0 nên có một vectơ pháp tuyến n 2; 1;3 . 1 Câu 4. Tính I 1 x .exdx . 0 A. e . B. e 2.C. 2 e.D. e 2 . Lời giải Chọn B Đặt u 1 x và dv exdx , ta có du dx và v ex . Do đó 1 1 1 x .exdx 1 x ex 1 ex . dx 1 x ex 1 ex 1 0 1 e 1 e 2 . 0 0 0 0 0 Vậy I e 2 . Câu 5. Xác định tọa độ điểm biểu diễn cho số phức z 2 3i . A. 2;3 . B. 2;3 .C. 2; 3 .D. 2; 3 . Lời giải Chọn C Số phức z 2 3i nên điểm biểu diễn z có tọa độ là 2; 3 . Câu 6. Trong không gian với hệ trục Oxyz , cho a 3;2;1 , b 3;2;5 . Xác định tọa độ vecto tích có hướng a,b của hai vecto đã cho? A. 0;8; 12 . B. 8; 12;5 .C. 0;8;12 .D. 8; 12;0 . Lời giải Chọn D 2 1 1 3 3 2 Có vecto tích có hướng a,b ; ; 8; 12;0 . 2 5 5 3 3 2 Câu 7. Cho hình phẳng giới hạn bởi các đường y x3 1, y 0, x 0 , x 1 quay xung quanh trục Ox . Tính thể tích của khối tròn xoay tạo thành? 79 5 23 A. . B. .C. .D. 9 . 63 4 14 Lời giải Chọn C Thể tích của khối tròn xoay tạo thành : 1 1 1 7 4 3 2 6 3 x x 23 V x 1 dx x 2x 1 dx 2 x . 7 4 14 0 0 0 x 1 y 2 z 3 Câu 8. Với giá trị nào của tham số m thì đường thẳng d : song song với đường thẳng 2 2 m x 1 t : y 2 t t ¡ ? z 2 2t A. 4 . B. 2 . C. 3 . D. 1. Lời giải Chọn A
- 6 Câu 13. Tính tích phân sin3 x.cos x dx . 0 1 A. 5 . B. 6 . C. . D. 4 . 64 Lời giải Chọn C Cách 1: Đặt t sin x dt cosxdx . Đổi cận : 1 1 6 2 t4 2 1 Khi đó sin3 x.cos x dx t3dt . 0 0 4 0 64 Cách 2: Sử dụng caiso bấm ra kết quả. Câu 14. Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng :2x y z 3 0 và :3x 4y 5z 0 . Xác định góc tạo bởi hai mặt phẳng và ? A. 450 . B. 900 . C. 300 . D. 600 . Lời giải Chọn C Gọi là góc tạo bởi hai mặt phẳng và . Ta có n 2; 1;1 ,n 3; 4;5 . n .n 6 4 5 3 cos . 2 2 2 2 2 2 2 n . n 2 1 1 . 3 4 5 300 . Câu 15. Tìm họ nguyên hàm của hàm số f x x3 3x 2 ? x4 x2 x4 A. F x 2x C . B. F x 3x2 2x C . 4 2 3 x4 3x2 C. F x 3x2 3x C . D. F x 2x C . 4 2 Lời giải Chọn D 3 4i Câu 16. Xác định số phức z ? 4 i 16 11 9 23 9 4 16 13 A. i . B. i .C. i .D. i . 15 15 25 25 25 25 17 17 Lời giải Chọn D
- Vậy Mặt phẳng không cắt mặt cầu S . Câu 20. Trong không gian với hệ tọa độ Oxyz , cho hình hộp ABCD.A B C D biết A 2; 1;2 , B 1;2;1 , C 2;3;2 , D 3;0;1 . Tìm tọa độ điểm B . A. B 1;2;2 . B. B 2; 2;1 .C. B 1; 2; 2 .D. B 2; 1;2 . Lời giải Chọn A Gọi B x; y; z ; I, H lần lượt là trung điểm của AC, B D . Suy ra I 0;1;2 , H 2;1;1 . 1 x 2 0 x 1 Vì ABCD.A B C D là hình hộp nên BB IH 2 y 1 1 y 2 . 1 z 1 2 z 2 b a Câu 21. Cho hàm số y f x liên tục trên đoạna;c và a b c . Biết f x dx 10, f x dx 5. a c b Tính f x dx? c A. 15. B. 15 . C. 5 .D. 5 . Lời giải Chọn B b a b f x dx f x dx f x dx 5 10 15 c c a ex 3 e3x Câu 22. Giả sử F x là một nguyên hàm của f x trên 0; và I dx . Khẳng định nào sau x 1 x đây đúng? A. I F 4 F 2 . B. I F 6 F 3 . C. I F 9 F 3 .D. I F 3 F 1 . Lời giải Chọn B 1 t Đặt t 3x dt 3dx dt dx; x . 3 3 Đổi cận
- Câu 26. Tìm một họ nguyên hàm của hàm số f x e4x 2 ? 1 1 A. f x dx .e2x 1 C . B. f x dx . e2x 1 C . 2 2 1 C. f x dx e2x 1 C . D. f x dx .e4x 2 C . 2 Lời giải Chọn A 1 Ta có f x dx e2x 1dx .e2x 1 C. 2 Câu 27. Cho số phức z a bi a,b ¡ ;a 0 . Xác định kết quả của phép toán z z ? A. 0. B. Số thuần ảo. C. Số thực.D. 2. Lời giải Chọn C Ta có z a bi z a bi. Suy ra z z 2a , nên chọn đáp án C. Câu 28. Trong không gian Oxyz , viết phương trình mặt phẳng P đi qua điểm A 3;2; 5 và vuông góc x 3 2t với đường thẳng d : y 1 t t ¡ ? z 6 A. 2x y z 3 0 . B. 2x y 8 0 .C. 2x y 5 0.D. 2x y 8 0 . Lời giải Chọn D Đường thẳng d có vectơ chỉ phương ud 2;1;0 . Mặt phẳng P vuông góc với đường thẳng d nên P có một vectơ pháp tuyến là nP ud 2;1;0 . Khi đó phương trình mặt phẳng P đi qua điểm A 3;2; 5 và có vectơ pháp tuyến là nP 2;1;0 : 2 x 3 y 2 0 2x y 8 0. x 2 y 4 1 z Câu 29. Trong không gian Oxyz , cho hai đường thẳng d : và 2 3 2 x 4t d : y 1 6t ; t ¡ . Xác định vị trí tương đối giữa hai đường thẳng d và d ? z 1 4t A. d và d cắt nhau. B. d và d song song với nhau. C. d và d trùng nhau. D. d và d chéo nhau. Lời giải Chọn B Đường thẳng d có vectơ chỉ phương ud 2;3;2 và đi qua điềm M 2; 4;1 Đường thẳng d có vectơ chỉ phương ud 4;6;4 và đi qua điềm M 0;1; 1 Suy ra ud ,ud 0;0;0 0
- Mặt phẳng P có vec tơ pháp tuyến n(1; 1;1) + Đáp án A: đường thẳng d3 đi qua điểm M 3 (1;2;3) và có véc tơ chỉ phương u3 (0;1;1) u3.n 1.0 1.( 1) 1.1 0 đường thẳng d3 song song hoặc nằm trên P . + Đáp án B: đường thẳng d4 đi qua điểm M 4 (1;2;3) và có véc tơ chỉ phương u4 (1;1;0) u4.n 1.1 1.( 1) 0.1 0 đường thẳng d4 song song hoặc nằm trên P . + Đáp án C: đường thẳng d1 đi qua điểm M 4 (1; 1; 2) và có véc tơ chỉ phương u1(2;1;2) u1.n 2.1 1.( 1) 2.1 3 đường thẳng d1 cắt mặt phẳng P . + Đáp án D: đường thẳng d2 đi qua điểm M 2 (1; 1; 2) và có véc tơ chỉ phương u2 (1;2;1) u2.n 1.1 2.( 1) 1.1 0 đường thẳng d2 song song hoặc nằm trên P . Câu 34. Trong không gian tọa độ Oxyz , cho mặt cầu có phương trình x2 y2 z2 2x 2y 6z 2 0 cắt mặt phẳng Oxz theo một đường tròn, xác định bán kính của đường tròn giao tuyến đó? A. 3 2 . B. 4 2 .C. 5 .D. 2 2 . Lời giải Chọn D d Mặt cầu có tâm I(1; 1;3) bán kính R 3 Mặt phẳng Oxz có phương trình y 0 Gọi H 1;0;3 là hình chiếu của I lên mặt phẳng Oxz IH Oxz H là tâm đường tròn giao tuyến Ta có : d(I; Oxz ) IH 1 d Bán kính đường tròn giao tuyến: r R2 d 2 9 1 2 2 . 2 Câu 35. Cho hai số phức z1, z2 là nghiệm của phương trình z 4z 13 0 . Tính môđun của số phức w z1 z2 i z1z2 ? A. w 185 .B. w 3 . C. w 17 .D. w 153 . Lời giải Chọn A z1 z2 4 Theo định lí Vi-ét ta có: . z1.z2 13 2 Suy ra w 13 4i w 132 4 185 .
- 1 2 3 = ò(7- 4x2 )dx + ò(4- x2 )dx + ò(- 4+ x2 )dx 0 1 2 29 = . 3 Câu 39. Trong mặt phẳng Oxy , gọi A là điểm biểu diễn của số phức z 2 5i và B là điểm biểu diễn của số phức z 2 5i . Tìm mệnh đề đúng trong các mệnh đề sau? A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua đường thẳng y x . D. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O . Lời giải Chọn B A là điểm biểu diễn của số phức z 2 5i A 2;5 . B là điểm biểu diễn của số phức z 2 5i B 2;5 . Suy ra: hai điểm A và B đối xứng với nhau qua trục tung. Câu 40. Cho số phức z a bi . Tìm mệnh đề đúng trong các mệnh đề sau? 2 A. z2 z . B. z.z a2 b2 .C. z z 2a .D. z z 2bi . Lời giải Chọn A 2 z a bi z2 a bi a2 b2 2abi . 2 2 2 2 2 2 2 2 2 2 2 z a b 2ab a b a b z . 3 x 3 Câu 41. Biết tích phân dx bln 2; a,b ¡ . Tính giá trị của biểu thức a b ? 2 0 cos x a A. 1 B. 0 . C. 2 . D.1. Lời giải Chọn C u x du dx Đặt: dx dv v tan x cos2 x Ta có: 3 x 3 3 sinx dx x tan x 3 tan xdx x tan x 3 dx cos2 x cos x 0 0 0 0 0 3 d cos x 3 3 . 3 . 3 ln cos x 3 ln 2 bln 2 3 cos x 3 3 a 0 0 Suy ra: a 3;b 1 a b 2 . 5 2 x 2 1 Câu 42. Biết I dx 4 a ln 2 bln 5; a;b ¢ . Tính S a b ? 1 x A. S 11.B. S 5.C. S 9 .D. S 3.
- 2 Xét tan xf (cos2 x)dx 6. 0 dt Đặt cos2 x t dt 2sin x.cos xdx 2cos2 x tan xdx 2t tan xdx tan xdx . 2t x 0 t 1 0 f (t)dt 1 f (t)dt 1 f (t)dt Đổi cận: suy ra 6 6 12 x t 0 2t 2t t 2 1 0 0 8 f ( 3 x) Xét dx 6. 1 x Đặt 3 x u x u3 dx 3u2du x 1 u 1 2 f (u) 2 f (u) 2 f (u) 2 f (t) Đổi cận suy ra 6 3u2du 3 du du 2 dt 2. 3 x 8 u 2 1 u 1 u 1 u 1 t 2 f (x2 ) Tính I dx 0 x Đặt x2 t dt 2xdx , x 0 t 0 Đổi cận suy ra : x 2 t 2 2 f (x2 ) 2 f (t) 1 1 f (t) 2 f (t) 1 I dx dt dt dt (12 2) 7. 0 x 0 2t 2 0 t 1 t 2 e ln x Câu 47. Cho I dx có kết quả dạng I ln a b với a , b . Tìm khẳng định đúng? 2 ¤ 1 x ln x 2 1 A. b 1. B. 4a2 9b2 11.C. 2a 3b 3.D. 2ab 1. a Lời giải Chọn A 1 Đặt t ln x 2 dt dx . x e 3 3 ln x t 2 3 1 2 2 3 1 Khi đó I dx dt I dt ln | t | ln . 2 2 2 1 x ln x 2 2 t 2 t t t 2 2 3 3 1 1 Suy ra a ; b . Do đó b 1. 2 3 a Câu 48. Trong mặt phẳng Oxy cho điểm A biểu diễn số phức z1 1 2i . B là điểm thuộc đường thẳng y 2 sao cho tam giác OAB cân tại O . Điểm B biểu diễn số phức nào sau đây? z 1 2i A. z 1 2i . B. z 2 2i .C. .D. z 1 2i . z 1 2i Lời giải Chọn C Điểm A biểu diễn số phức z1 1 2i A 1; 2 . Vì B y 2 B x ; 2 .