Giáo án dạy thêm Đại số Lớp 8 - Chủ đề 1: Phép nhân đơn thức, đa thức

docx 11 trang Trần Thy 09/02/2023 13440
Bạn đang xem tài liệu "Giáo án dạy thêm Đại số Lớp 8 - Chủ đề 1: Phép nhân đơn thức, đa thức", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxgiao_an_day_them_dai_so_lop_8_chu_de_1_phep_nhan_don_thuc_da.docx

Nội dung text: Giáo án dạy thêm Đại số Lớp 8 - Chủ đề 1: Phép nhân đơn thức, đa thức

  1. CHỦ ĐỀ 1: PHÉP NHÂN ĐƠN THỨC - ĐA THỨC A.TÓM TẮT LÝ THUYẾT: 1. Quy tắc nhân đơn thức với đa thức: Muốn nhân 1 đơn thức với 1 đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. A(B + C) = AB + AC 2. Quy tắc nhân đa thức với đa thức: Muốn nhân một đa thức với 1 đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. (A + B)(C + D) = AC + AD + BC + BD B. CÁC VÍ DỤ. Ví dụ 1: Thực hiện phép nhân: a) (- 2x)(x3 – 3x2 – x + 1) 2 1 1 b) (- 10x3 + y - z)( xy) 5 3 2 c) (x3 + 5x2 – 2x + 1)(x – 7) Giải a) (- 2x)(x3 – 3x2 – x + 1) = - 2x4 + 3x3 + 2x2 – 2x 2 1 1 1 b) (- 10x3 + y - z)( xy) = 5x4y – 2xy2 + xy 5 3 2 5 c) (x3 + 5x2 – 2x + 1)(x – 7) = x4 – 2x3 – 37x2 + 15x – 7 1 Ví dụ 2: Tính giá trị của biểu thức: x(x – y) + y(x + y) tại x = - và y = 3 2 Giải Ta có: x(x – y) + y(x + y) = x2 – xy + xy + y2 = x2 + y2 1 1 9 Khi x = - và y = 3, giá trị của biểu thức là: ( - )2 + 32 = 2 2 4 Chú ý: Trong các dạng bài tập « TÍNH GIÁ TRỊ BIỂU THỨC », việc thực hiện phép nhân và rút gọn rồi mới thay giá trị của biến vào sẽ làm cho việc tính toán giá trị biểu thức được dễ dàng và thường là nhanh hơn. Ví dụ 3: Tính C = (5x2y2)4 = 54 (x2)4 (y2)4 = 625x8y8 Chú ý: Lũy thừa bậc n của một đơn thức là nhân đơn thức đó cho chính nó n lần. Để tính lũy thừa bậc n một đơn thức, ta chỉ cần: - Tính lũy thừa bậc n của hệ số
  2. 8) [(x2 – 2xy + 2y2)(x + 2y) - (x2 + 4y2)(x – y)] 2xy 9) -3ab.(a2 - 3b) 10) (x2 – 2xy + y2 )(x - 2y) 11) (x + y + z)(x – y + z) 12) 12a2b(a - b)(a + b) 13) (2x2 - 3x + 5)(x2 - 8x + 2) DẠNG 2: TOÁN TÌM x * Phương pháp: - Thực hiện nhân ĐƠN THỨC với ĐA THỨC ; nhân ĐA THỨC với ĐA THỨC - Chuyển các hạng tử chứa ẩn sang vế trái, các hạng tử không chứa ẩn (hằng số) sang vế phải. - Từ đó tìm ra x. * Bài tập vận dụng. Bài 1: Tìm x biết 1 1 1 a) x 2 ( x 4). x 14. 4 2 2 b) 3(1 - 4x)(x - 1) + 4(3x - 2)(x + 3) = - 27 c) (x + 3)(x2 - 3x + 9) – x(x - 1)(x+1) = 27. d) 6x(5x + 3) + 3x(1 – 10x) = 7 e) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44 f) (x + 1)(x + 2)(x + 5) – x2(x + 8) = 27 Bài 2: Tìm x biết: (-2 + x2) (-2 + x2) (-2 + x2) (-2 + x2) (-2 + x2) = 1 Hướng dẫn Một biểu thức mà có lũy thừa bậc lẻ bằng 1 thì số đó phải bằng 1 (-2 + x2)5 = 1 => (-2 + x2) = 1 hay x2 = 3 Vậy x = 3 hoặc x = - 3 Bài 3: Cho các đa thức: f(x) = 3x2 – x + 1 và g(x) = x – 1 a)Tính f(x).g(x) 5 b)Tìm x để f(x).g(x) + x2[1 – 3.g(x)] = 2 Hướng dẫn a) Ta có: f(x).g(x) = (3x2 – x + 1)(x – 1) = 3x3 – 3x2 – x2 + x + x – 1 = 3x3 – 4x2 + 2x – 1 b) Ta có: f(x).g(x) + x2[1 – 3.g(x)] = (3x3 – 4x2 + 2x – 1 ) + x2[1 – 3(x – 1)]
  3. Chứng minh các biểu thức sau không phụ thuộc vào biến số: A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7) B = (x - 5)(2x + 3) – 2x(x – 3) + x + 7 D = x(2x + 1) – x2(x + 2) + (x3 – x + 3) E = 4(x – 6) – x2(2 + 3x) + x(5x – 4) + 3x2(x – 1) DẠNG 5: CHỨNG MINH CÁC ĐẲNG THỨC: * Phương pháp: - Thực hiện nhân ĐƠN THỨC với ĐA THỨC ; nhân ĐA THỨC với ĐA THỨC để biến đổi vế phức tạp của đẳng thức sao cho kết quả bằng vế còn lại, khi đó đẳng thức được chứng minh. - Nếu cả hai vế đằng thức cùng phức tạp, ta có thể biến đổi đồng thời cả 2 vế của đẳng thức sao cho chúng cùng bằng 1 biểu thức thứ ba, hoặc cũng có thể lấy biểu thức vế trái trừ biểu thức vế phải và biến đổi có kết quả bằng 0 thì chứng tỏ đẳng thức đã cho được chứng minh. * Bài tập vận dụng. Bài 1: Chứng minh đẳng thức sau: a) a(b – c) – b(a + c) + c(a – b) = - 2bc b) a(1 – b)+ a(a2 – 1) = a(a2 – b) c) a(b – x) + x(a + b) = b(a + x) Hướng dẫn a) a(b – c) – b(a + c) + c(a – b) = - 2bc VT = a(b – c) – b(a + c) + c(a – b) = ab – ac – ab – bc + ac – bc = - 2bc = VP Vậy đẳng thức được chứng minh. b) a(1 – b)+ a(a2 – 1) = a(a2 – b) VT = a – ab + a3 – a = a3 – ab = a(a2 – b) = VP. Vậy đẳng thức được chứng minh. c) a(b – x) + x(a + b) = b(a + x) VT = ab – ax + ax + bx = ab + bx = b(a + x) = VP Vậy đẳng thức được CM Bài 2: Chứng minh các đẳng thức sau: a) (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc b) (3a + 2b – 1)(a + 5) – 2b(a – 2) = (3a + 5)(a + 3) + 2(7b – 10) Bài 3: Cho a + b + c = 2p. CMR 2bc + b2 + c2 – a2 = 4p(p – a) Hướng dẫn
  4. M = 25 – 24 = 1 Bài 7: Tính giá trị của các biểu thức sau: a) A = x3 – 30x2 – 31x + 1 , tại x = 31 b) B = x5 – 15x4 + 16x3 – 29x2 + 13x , tại x = 14 Hướng dẫn a) Vì x = 31 , nên thay 30 = x – 1, ta có A = x3 – (x – 1)x2 – x.x + 1 = x3 – x3 + x2 – x2 + 1 = 1 Vậy với x = 31 thì A = 1 b) Vì x = 14 , nên thay 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1 ; 13 = x -1, ta có B = x5 – (x + 1)x4 + (x + 2)x3 – (2x + 1)x2 + x(x – 1) = x5 – x5 – x4 + x4 + 2x3 – 2x3 – x2 + x2 – x = -x Vậy với x = 14 thì B = - 14 DẠNG 8: BÀI TOÁN CHỨNG MINH CHIA HẾT * Phương pháp: Muốn chứng minh một biểu thức A chia hết cho một số a nào đó ta làm như sau: - Dùng tính chất chia hết: + Cần chứng minh chia hết cho 2 => chứng minh A có dạng 2k + Cần chứng minh chia hết cho 3 => chứng minh A có dạng 3k + Cần chứng minh chia hết cho 5 => chứng minh A có dạng 2k + Cần chứng minh chia hết cho a => chứng minh A có dạng a.k - Kết hợp tính chất chia hết của một tổng (một hiệu) cho một số. * Bài tập vận dụng: Bài 1/ a) CMR với mọi số nguyên n thì : (n2 - 3n + 1)(n + 2) – n3 + 2 chia hết cho 5. b) CMR với mọi số nguyên n thì : (6n + 1)(n+5) –(3n + 5)(2n – 10) chia hết cho 2. Đáp án: a) Rút gọn BT ta được 5n2 + 5n chia hết cho 5 b) Rút gọn BT ta được 24n + 10 chia hết cho 2. Bài 2: CMR a) 817 – 279 – 913 chia hết cho 405 b) 122n + 1 + 11n + 2 chia hết cho 133 Hướng dẫn a) 817 – 279 – 913 chia hết cho 405 Ta có: 817 – 279 – 913 = (34)7 – (33)9 – (32)13 = 328 – 327 – 326 = 326(9 – 3 – 1)
  5. a) 3x(5x2 - 2x - 1); b) (x2 - 2xy + 3)(-xy); 1 2 2 c) x2y(2x3 - xy2 - 1); d) x(1,4x - 3,5y); 2 5 7 1 2 3 4 e) xy( x2 - xy + y2); f)(1 + 2x - x2)5x; 2 3 4 5 Bài 2. Đơn giản biểu thức rồi tính giá trị của chúng. 3 a) 3(2a - 1) + 5(3 - a) với a = . 2 b) 25x - 4(3x - 1) + 7(5 - 2x) với x = 2,1. c) 4a - 2(10a - 1) + 8a - 2 với a = -0,2. 1 d) 12(2 - 3b) + 35b - 9(b + 1) với b = 2 Bài 3. Thực hiện phép tính sau: a) 3y2(2y - 1) + y - y(1 - y + y2) - y2 + y; b) 2x2.a - a(1 + 2x2) - a - x(x + a); c) 2p. p2 -(p3 - 1) + (p + 3). 2p2 - 3p5; d) -a2(3a - 5) + 4a(a2 - a). Bài 4. Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến x. a) x(2x + 1) - x2(x + 2) + (x3 - x + 3); b) x(3x2 - x + 5) - (2x3 +3x - 16) - x(x2 - x + 2); Bài 5. Chứng minh rằng các biểu thức sau đây bằng 0; a) x(y - z) + y((z - x) + z(x - y); b) x(y + z - yz) - y(z + x - zx) + z(y - x). Bài 6. Thực hiện phép tính: a) (5x - 2y)(x2 - xy + 1); b) (x - 1)(x + 1)(x + 2); 1 1 c) x2y2(2x + y)(2x - y); d) ( x - 1) (2x - 3); 2 2 1 1 e) (x - 7)(x - 5); f) (x - )(x + )(4x - 1); 2 2 Bài 7. Chứng minh: a) (x - 1)(x2 - x + 1) = x3 - 1; b) (x3 + x2y + xy2 + y3)(x - y) = x3 - y3; Bài 8. Thực hiện phép nhân: a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4); b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); Bài 9. Viết các biểu thức sau dưới dạng đa thức: a) (2a - b)(b + 4a) + 2a(b - 3a);
  6. d) D 2x(10x2 5x 2) 5x(4x2 2x 1) với x 5 . ĐS: D 5 Bài 5.Thực hiện các phép tính, sau đó tính giá trị biểu thức: 1 255 a) A (x3 x2y xy2 y3)(x y) với x 2,y . ĐS: A 2 16 b) B (a b)(a4 a3b a2b2 ab3 b4) với a 3,b 2 . ĐS: B 275 1 1 3 c) C (x2 2xy 2y2)(x2 y2) 2x3y 3x2y2 2xy3 với x ,y . ĐS: C 2 2 16 Bài 6.Chứng minh rằng các biểu thức sau không phụ thuộc vào x: a) A (3x 7)(2x 3) (3x 5)(2x 11) b) B (x2 2)(x2 x 1) x(x3 x2 3x 2) c) C x(x3 x2 3x 2) (x2 2)(x2 x 1) d) D x(2x 1) x2(x 2) x3 x 3 e) E (x 1)(x2 x 1) (x 1)(x2 x 1) Bài 7.* Tính giá trị của đa thức: a) P(x) x7 80x6 80x5 80x4 80x 15 với x 79 HD: 80 = 79 + 1 = x + 1 thay vào P(x) = x7 – (x + 1).x6 + ( x + 1).x5 - ( x + 1).x4 + +( x + 1).x+ 15 ĐS: P(79) 94 b) Q(x) x14 10x13 10x12 10x11 10x2 10x 10 với x 9 ĐS: Q(9) 1 c) R(x) x4 17x3 17x2 17x 20 với x 16 ĐS: R(16) 4 d) S(x) x10 13x9 13x8 13x7 13x2 13x 10 với x 12 ĐS: S(12) 2